Publications

32. Li, Z. & Hirst, J.D., Computed optical spectra of SARS-CoV-2 proteins. Chem. Phys. Lett., 758, 137935 (2020).
DOI: http://dx.doi.org/10.1016/j.cplett.2020.137935

spacerjournal graphic
31. Auvray, F. & Hirst, J.D., Unfolding dynamics of a photo-switchable helical peptide. J. Phys. Chem. B, 124, 5380–5392 (2020).
DOI: http://dx.doi.org/10.1021/acs.jpcb.0c04017

spacerjournal graphic
30. Rogers, D.M, Jasim, S.B, Dyer, N.T, Auvray, F, Rèfrègiers, M, Hirst, J.D., Electronic circular dichroism of proteins. Chem, 5, 2751–2774 (2019).
DOI: http://dx.doi.org/10.1016/j.chempr.2019.07.008
29. Auvray, F, Dennetiere D, Giulianib A, Jamme F, Wien F, Polack F, Menneglier C, Lagarde B, Hirst JD, Rèfrègiers M., Time resolved transient circular dichroism spectroscopy based on synchrotron natural polarization. Stuct Dynamics, 6, 54307 (2019).
DOI: http://dx.doi.org/10.1063/1.5120346
28. Michaelis M, Hildebrand N, Meissner RH, Wurzler N, Li Z, Hirst JD, Micsonai A, Kardos J, Delle Piane M & Colombi Ciacchi L., Impact of the conformational variability of oligopeptides on the computational prediction of their CD spectra. J Phys Chem B, 123, 6694–6704 (2019).
DOI: http://dx.doi.org/10.1021/acs.jpcb.9b03932
27. Hildebrand, N., Michaelis, M., Wurzler, N., Li, Z., Hirst, J.D., Misconai, A., Kardoe, J., Koeppen, S., delle Piane, M., Bussi, G. & Ciacchi, L.C. , Atomistic details of protein conformational changes upon adsorption on silica. ACS Biomat. Sci. Eng., 4, 4036–4050 (2018).
DOI: http://dx.doi.org/10.1021/acsbiomaterials.8b00819
26. Jasim, S.B., Li, Z., Guest, E.E. & Hirst, J.D., DichroCalc: improvements in computing protein circular dichroism spectroscopy in the near-ultraviolet. J. Mol. Biol., 430, 2196–2202 (2018).
DOI: http://dx.doi.org/10.1016/j.jmb.2017.12.009
25. Li, Z. & Hirst, J.D., Vibrational structure in the near-ultraviolet electronic circular dichroism spectra of proteins. Chem. Sci., 8, 4318–4333 (2017).
DOI: http://dx.doi.org/10.1039/C7SC00586E
24. Li, Z., Robinson, D. & Hirst, J.D., Vibronic structure in the far-UV electronic circular dichroism spectra of proteins. Faraday Discussion, 177, 329–344 (2015).
DOI: http://dx.doi.org/10.1039/C4FD00163J
23. Gaigeot, M.-P., Besley, N.A. & Hirst, J.D, Modelling the infrared and circular dichroism spectroscopy of linear and cyclic diamides. J. Phys. Chem. B, 115, 5562–5535 (2011).
DOI: http://dx.doi.org/10.1021/jp111140f
22. Bulheller, B.M., Rodger, A., Hicks, M.R., Dafforn, T.R., Serpell, L.C., Marshall, K.E., Bromley, E.H.C., King, P.J.S., Channon, K.J., Woolfson, D.N. & Hirst, J.D., Flow linear dichroism of some prototypical proteins. J. Am. Chem. Soc., 131, 13305–13314 (2009).
DOI: http://dx.doi.org/10.1021/ja902662e

spacerjournal graphic
21. Bulheller, B.M., Pantoş G.D., Sanders, J.K.M. & Hirst, J.D., Electronic structure and circular dichroism spectroscopy of naphthalenediimide nanotubes. Phys. Chem. Chem. Phys., 11, 6060–6065 (2009).
DOI: http://dx.doi.org/10.1039/b905187b

spacerjournal graphic
20. Bulheller, B.M. & Hirst, J.D., DichroCalc–circular and linear dichroism online. Bioinformatics, 25, 539–540 (2009).
DOI: http://dx.doi.org/10.1093/bioinformatics/btp016
19. Bulheller, B.M., Miles, A.J., Wallace, B.A. & Hirst, J.D., Charge-Transfer Transitions in the Vacuum-Ultraviolet of Protein Circular Dichroism Spectra. J. Phys. Chem. B, 112, 1866–1874 (2008).
DOI: http://dx.doi.org/10.1021/jp077462k
18. Bulheller, B.M., Rodger, A. & Hirst, J.D., Circular and Linear Dichroism of Proteins. Phys. Chem. Chem. Phys., 9, 2020–2035 (2007).
DOI: http://dx.doi.org/10.1039/b615870f

spacerjournal graphic
17. Oakley, M.T. & Hirst, J.D., Charge-Transfer Transitions in Protein Circular Dichroism Calculations. J. Am. Chem. Soc., 128, 12414–12415 (2006).
DOI: http://dx.doi.org/10.1021/ja0644125

spacerjournal graphic
16. Oakley, M.T., Bulheller, B.M. & Hirst, J.D., First Principles Calculations of Protein Circular Dichroism in the Far-Ultraviolet and Beyond. Chirality, 18, 340–347 (2006).
DOI: http://dx.doi.org/10.1002/chir.20264
15. Rogers, D.M. & Hirst, J.D., First Principles Calculations of Protein Circular Dichroism in the Near-Ultraviolet. Biochemistry, 43, 11092–11102 (2004).
DOI: http://dx.doi.org/10.1021/bi049031n

spacerjournal graphic
14. Gilbert, A.T.B. & Hirst, J.D., Charge-Transfer Transitions in Protein Circular Dichroism Spectra. J. Mol. Struct. (THEOCHEM), 675, 53–60 (2004).
DOI: http://dx.doi.org/10.1016/j.theochem.2003.12.038
13. Rogers, D.M. & Hirst, J.D., Calculations of Protein Circular Dichroism from First Principles. Chirality, 16, 234–243 (2004).
DOI: http://dx.doi.org/10.1002/chir.20018
12. Rogers, D.M. & Hirst, J.D., Ab Initio Studies of Aromatic Side-Chains in Gas Phase and Solution. J. Phys. Chem. A, 107, 11191–11200 (2003).
DOI: http://dx.doi.org/10.1021/jp036081d
11. Hirst, J.D., Colella, K. & Gilbert, A.T.B., Electronic Circular Dichroism Spectra of Proteins from First Principles Calculations. J. Phys. Chem. B, 107, 11813–11819 (2003).
DOI: http://dx.doi.org/10.1021/jp035775j
10. Bhattacharjee, S., Tóth, G., Lovas, S. & Hirst, J.D., Influence of Tyrosine on the Electronic Circular Dichroism of Helical Peptides. J. Phys. Chem. B, 107, 8682–8688 (2003).
DOI: http://dx.doi.org/10.1021/jp034517j
9. Hirst, J.D., Bhattacharjee, S. & Onufriev, A.V., Theoretical Studies of Time-Resolved Protein Folding. Faraday Discussions, 122, 253–267 (2003).
DOI: http://dx.doi.org/10.1039/b200714b
8. Andrew, C.D., Bhattacharjee, S., Kokkoni, N., Hirst, J.D., Jones, G.R. & Doig, A.J., Stabilizing Interactions between Aromatic and Basic Side Chains in α-Helical Peptides. Tyrosine Effects on Helix Circular Dichroism. J. Am. Chem. Soc., 124, 12706–12714 (2002).
DOI: http://dx.doi.org/10.1021/ja027629h

spacerjournal graphic
7. Dang, Z. & Hirst, J.D., Short Hydrogen Bonds, Circular Dichroism and Over- Estimates of Peptide Helicity. Angew. Chemie Intl. Ed., 40, 3619–3621 (2001).
DOI: http://dx.doi.org/10.1002/1521-3773(20011001)40:19<3619::AID-ANIE3619>3.0.CO;2-4
6. Besley, N.A. & Hirst, J.D., Hydrogen Bonding in Protein Circular Dichroism Calculations. J. Mol. Struct. (THEOCHEM), 506, 161–167 (2000).
DOI: http://dx.doi.org/10.1016/S0166-1280(00)00409-7
5. Besley, N.A. & Hirst, J.D., Theoretical Studies toward Quantitative Protein Circular Dichroism Calculations. J. Am. Chem. Soc., 121, 9636–9644 (1999).
DOI: http://dx.doi.org/10.1021/ja990627l
4. Hirst, J.D. & Besley, N.A., Response to »Comment on 'Improving Protein Circular Dichroism Calculations in the Far-Ultraviolet through Reparametrizing the Amide Chromophore'«. J. Chem. Phys. [J. Chem. Phys. 109, 782-788 (1998)], 111, 2846–2847 (1999).
DOI: http://dx.doi.org/10.1063/1.479563
3. Hirst, J.D., Improving Protein Circular Dichroism Calculations through Better Ab Initio Models of the Amide Chromophore. Enantiomer, 3, 215–220 (1998).
2. Hirst, J.D., Improving Protein Circular Dichroism Calculations in the Far-Ultraviolet through Reparametrizing the Amide Chromophore. J. Chem. Phys., 109, 782–788 (1998).
DOI: http://dx.doi.org/10.1063/1.476617
1. Hirst, J.D. & Brooks III, C.L., Helicity, Circular Dichroism and Molecular Dynamics of Proteins. J. Mol. Biol., 243, 173–178 (1994).
DOI: http://dx.doi.org/10.1006/jmbi.1994.1644