ParsePDB.pm

Package: ParsePDB.pm

Author: Benjamin Bulheller

Mail Address webmaster-.at.-bulheller.com

Website http:/ /comp.chem.nottingham.ac.uk/parsepdb/

http:/ /www.bulheller.com
Research Group: Prof. Jonathan D. Hirst

School of Physical Chemistry

University of Nottingham
Funded by: EPSRC
Date: November 2005 — November 2008

Acknowledgments: Special thanks to Dr. Daniel Barthel for many,
many discussions and help whenever needed!

Licence

Copyright (© 2009 Benjamin Bulheller, www.bulheller.com

This program is free software: you can redistribute it and /or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation, either version 2 of the License,

or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not,

see http:/ /www.gnu.org/licenses/ .

University of Nottingham

Contents

1 Foreword

2 Installation

3 Nomenclature and Naming Conventions

4 Initialization of a PDB Object

41 Parameters explicitly for->new oL L.
4.2 Changeable Parameters for -—>new

5 Identify Subgroups of the Protein for the Use in Loops
6 Count Number of Subgroups of the Protein

7 Retrieve a Part of the PDB with ->Get

7.1 Parametersfor -—>Get
7.2 Internal Versus External Identifiers

8 Write the Whole or Parts of the PDB
9 Retrieve Certain Information About the Protein

10 Renumbering Entries in the PDB

10.1 Renumbering Inserted Residues.
10.2 Ignoringthe TER

11 Generating CHARMM input files

11.1 Whatitdoes o e
11.2 Whatitdoesnotdo e

12 Filtering the Data

12.1 Keywords for filtering actions
12.2 Inserted Residues e
12.3 Alternative Atom Locations

13 Other methods

13.1 =>GetFASTA e e e
13.2 =>WriteFASTA e e e
13.3 =>AminoAcidConvert e
13.4 ->FormatLine i i e e e e e

14 Speed issues

15 Error handling

10
10
16

17
18

21
22
22

23
23
23

24
24
25
26

27
27
27
27
27

1 Foreword

Despite the fact that there are several packages around with the ability to parse PDB files and do
funny things with them (e.g. BIOPERL), it looked like there was a lack of really easy ones. Driven
by the need of breaking a protein into its subgroups (models and chains), ParsePDB has been coded
with the intention to create a package that is powerful enough to handle PDBs with a fair amount of
functions but is still easy to handle.

Keeping the complexity at a minimum, a protein can be read, parsed and its chains written into
single files with just three commands, which are as easy as new, Parse and WriteChains. Given
certain parameters, the atoms and residues can be counted, renumbered and filtered (i.e. just certain
elements or residues can be extracted). Most of the command names are designed in such a way that
they may take a little time to type, but are easy to remember and meaningful when being read.

The PDB parser is an integral part of the web interface DichroCalc, which can be freely used at
http:/ /comp.chem.nottingham.ac.uk/dichrocalc.

Benjamin Bulheller

2 Installation

The PDB parser itself is a Perl package, indicated by the extension .pm. To install the package globally
on your system, you can use the provided makefile to copy it to your library path. To do this, login
as root and follow the standard routine:

./perl Makefile.PL
make
make install

Since the package uses Error.pm to handle exceptions, this package needs to be installed, too. If it is
not already installed then make will issue a warning message about that. Error.pm can be found at
http://search.cpan.org/ by searching for "Error”, was written by Graham Barr and is maintained

by Shlomi Fish. The version which was used during the development of the PDB parser was 0.15.
After installation, the parser can be used in a script by including the library with the use command:
use ParsePDB;

The function use searches Perl’s library path for the given package. If you do not want to install the
package globally on your system (for example if you do not possess root permissions), then you can
also copy the .pm file to a folder in you home directory. If you for instance collect your packages in

~/bin/perllib/, you can add this directory via

use lib "$ENV{HOME}/bin/perllib";
use ParsePDB;

This would also work for Error . pm.

Another nice trick is to add the folder the executed script is actually living in. The package FindBin
is usually included in standard perl installations and sets the variable $Bin to the folder of the script,

which can then be included via 1ib:

use FindBin qw/$Bin/;
use lib "$Bin";

3 Nomenclature and Naming Conventions

For the access to the single elements of the PDB (models, chains, residues, atoms or even specific
atoms of a certain type) there are some naming conventions which are followed throughout the

parser. It is important to differentiate between two things:

e external values

These values are read directly from the PDB. This means that the first item in a list (a residue or
an atom) might not necessarily start at 1, be sequential or that the values change after renum-
bering the file. Chains might not be accessible via their external ChainID, in case no external

ChainlD is given (which is quite common).

Overview of the numbers and labels of a PDB entry and their “name” in the parser:

ModelNumber (external)
Model (internal)
|

|
MODEL 1
ATOM 1 N LYS A 1 -15.872 7.811 19.851 1.00 76.73
ATOM 2 C LYS A 1 -15.332 7.443 18.561 1.00 99.86
ATOM 3 CA LYS A 1 -14.650 6.096 18.757 1.00 72.69
| [[|
| [[|
| | || Residue (internal)
| [[ResidueNumber (external)
| (. [
| [| Chain (internal)
| [| ChainLabel (external)
| [|
| [ResiduelLabel => ’LYS’
| [
| | AtomType => ’CA’
| | Element => ’C’
| |
| Atom (internal)
Race AtomNumber (external)

e internal numbers

Each item (model, chain, residue, atom) can be accessed via its sequential number in the domain
(starting at 0). This number will never change for models or chains, although there is some

logical ambiguity for atoms and residues. Residue 0 in the second chain is also Residue 20, if

no chain is specified and the first chain contains 20 residues (taking into account that counting
starts at 0). If a Residue is specified, the atom number is relative to that residue and can thus

change for that very atom, if no chain or no residue is given.

Although it was at first thought to be a nice idea to let internal numbers start at 1, it turned
out to be much more versatile to start at 0, like everything else in perl does, too. That way, for
instance an array with AtomTypes can be extracted and while looping over it, the current index
of the array (e.g. $AtomTypes [5]) can be used to extract the respective atom, which possesses

the internal number Atom 5.

Using the internal numbers is much more favorable than using the external identifiers. It is
easier to program, the numbers always start at 0 and are always sequential. In addition to that,
one does not need to worry about missing ChainlDs and format errors like that. Furthermore,
processing is much faster (something like 10 times and more if it comes to accessing residues or
atoms), since the external identifiers have to be translated and this translation may moreover be
prone to bugs (like finding only the first match if an identifier is used twice for some reason).
Inserted residues have the same external number and can only be accessed via the internal

number.

4 Initialization of a PDB Object

The parser can be invoked by the command ParsePDB. To create a new object, the method new is

required:

$PDB = ParsePDB->new (FileName => $File);
$PDB->Parse;

->Parse reads the whole PDB and splits it up into its subgroups. The routine for this is as follows:

e Look for blocks divided by MODEL tags. Every MODEL tag causes the parser to regard the

following block as a new model, a terminating ENDMDL is not desperately needed.

If no MODEL tag is found, the protein is regarded as model 0. This is also the default value for
most methods, if no model number is specified. Therefore, if no MODEL tags are given or just

one MODEL is present, the model number may be omitted.
e Inside each MODEL—ENDMDL domain (or the whole file if no MODEL is found): Every block

of ATOM lines is regarded as one chain either

- until a following TER or

- a change of the chain ID.

If HETATMs are following the ATOMs, there are two possibilities:

1. one chain with ATOMs and HETATMs if

— the blocks have the same chain IDs

- both have no chain IDs and are not separated by a TER.
2. two chains (one with ATOMs and one with HETATMs) if

— the blocks have different chain IDs;
— both blocks have no chain IDs and are separated by a TER.

Theoretically, there is the third possibility of the same (defined) chain ID and a TER in between.
However, according to the PDB manual, a TER marks the end of a chain, thus it is given the
higher priority in that case. A TER within a chain is more or less a violation of the PDB format
and in terms of the speed of parsing it is much faster to rely on the fact that a TER can only be

at the very end of a chain.

All chains inside one model are numbered sequentially as chain 0, 1, etc. and can be requested
with this number. If the following check of the chain IDs is successful, they may also be ad-

dressed using the actual letter.

Each line of the protein section is split into its entries during parsing. With parameters like
AtomIndex and RediduelIndex, given to ->Get, it is possible to access and use these readily
processed entires directly, please see ->Get for more information. The line is cut into pieces
according to the following scheme, taken from the Protein Data Bank Contents Guide, version
2.1:

Columns Field Name
1-6 Race

7-11 AtomNumber
13-16 AtomType

17 AltLoc

18-20 ResidueLabel
22 ChainLabel
23-26 ResidueNumber
27 InsResidue
31-38 X

39-46 y

47-54 z

55-60 Occupancy
61-66 Temp

67-80 Rest

The field names of the above table can be given to the various methods to filter the contents,

for example to retrieve only atoms with a certain AtomType.
e The chain IDs are checked whether
— every chain has an ID;
- no duplicate IDs are found within one model.

Missing or duplicate chain IDs cause a warning message that this can be corrected using ->Renumber-
Chains. In this case, the chains can only be accessed via their internal number and the parser

does not use or accept the real IDs at all.
The chain IDs are processed case sensitive! (Have a look at 1FENT to see that this is really

necessary...)

If the same PDB has to be read again (after changing something in the file, to return to the original
version after having renumbered something or for other reasons that require the object to be updated)

this can be done using ->Reset (the object will then be re-parsed automatically):

$PDB->Reset;

4.1 Parameters explicitly for ->new

The parameters for ->new are divided into two groups. The first one consists of parameters, which
can only be given to ->new directly, while the others can also be changed after the initialization of
the object. The default values of all of the following switches can be altered in ParsePDB.pm at the

very beginning of the code under “Default Values”.
e FileName => "file.pdb"
The PDB file including path. The extension .pdb can be omitted.

e NoHETATM => 0 | 1 (default 0)

If set to 717, HETATM lines will be filtered out before parsing the file. This can be handy;, if you
do not process HETATMs anyway and can save several checks, whether a chain contains any
ATOMs at all.

e NoANISIG => 0 | 1 (default 0)

If set to ”1”, SIGATM, SIGUIJ and ANISOU lines will be filtered out before parsing the file.
If you do not process these atoms, it saves processing time (each atom needs to be compared

against two strings only instead of five) and avoids checks for you.

4.2 Changeable Parameters for ->new

All the following parameters can be given to ->new or alternatively changed later on in the program
using one of the ->SetVariable methods. This is mainly useful to avoid a ->new-command that
needs three lines to be viewed entirely...

e ChainlabelAsLetter => 0 | 1 (default 0)

Tells ->WriteChains whether the exported file names should be named with the number of
the chain or the actual chain ID letter. Check whether ->ChainlLabelsValid returns true before
accessing the chains via letters, otherwise you can only use numbers until the IDs have been

corrected with ->RenumberChains!
$PDB->SetChainLabelAsLetter (0);

e ChainSuffix => "-c" (default "-c")
Defines the suffix that is added to the base name by ->WriteChains
$PDB->SetChainSuffix ("-c");

e ModelSuffix => "-m" (default "-m")
Defines the suffix that is added to the base name by ->WriteModels
$PDB->SetModelSuffix ("-m");

e HeaderRemark => 0 | 1 (default 1)

If enabled, a remark that the file has been changed by the parser and the header and footer
information might not be valid any more is added to the header. This is done be ->Get and

->Write, but not if the header is requested using the method ->GetHeader.

By default, the remark lines are added either after HEADER, COMPND or TITLE, depending
on which line is found last. That is, the comment will be inserted as the first REMARK lines. If
another position is needed, e.g. directly after the HEADER line, then this has to be changed at
the beginning of ParsePDB.pm under default values.

$PDB->SetHeaderRemark (1);

e AtomLocations => First|All|None|’A’|’B’| etc. (default ’All’)
Tells ->Get and ->Write globally how atoms with alternative atom locations are to be handled.
Please see ”->Get” for more information. If you do not need the alternative locations at all, you

can use RemoveAtomLocations to get rid of them.
$PDB->SetAtomLocations ("A11l");
e Verbose => 0 | 1 (default 1)
Turn verbose mode off or on. If enabled, all warnings (i.e. wrong ChainLabel) are printed.

$PDB->SetVerbose (1);

5 lIdentify Subgroups of the Protein for the Use in Loops

The Identify-Methods return the requested identifiers of a specific domain in the PDB. This domain
(model, chain, residue) can be narrowed using the internal or external identifiers. The returned list
can then be used in a loop to use it with ->Get.

e —>TdentifyModels

Returns an array with the internal identifiers of the models, i.e. [0, 1, 2] if three models are

present.
@AllModels = $PDB->IdentifyModels;
e —>TdentifyModelNumbers

Returns an array with the external identifiers of the models, i.e. [1, 2, 3] if three models are

present. These numbers may change, if the file is renumbered via ->RenumberModels.
Q@AllModelNumbers = $PDB->IdentifyModelNumbers;
e —>TIdentifyChains

Returns an array with the internal identifiers of the chains in a certain model, i.e. [0, 1, 2] if three
chains are present. If no model is given, 0 is taken by default. These numbers represent the
chains in the order as they occur in the PDB. Accessing the chains via their sequential numbers
is in any case more secure than using the chain IDs and works definitely with EVERY file, no
matter how crappy its format turns out to be. I'm sorry, if I keep on repeating myself, it comes

with increasing age, sorry about that.
@AllChains = $PDB->IdentifyChains (Model => 0);
e —>TIdentifyChainlabels

Returns an array with the chain IDs of the chains in a certain model, e.g. ['A’, 'B’, 'C’] if three

chains are present. If no model is given, 0 is taken by default.

Check whether ->ChainLabelsValid returns true before accessing the chains via letters, oth-

erwise you can only use numbers until the IDs have been corrected with ->RenumberChains!

It is strongly recommended to use the numbers given by ->IdentifyChains to access the chains

rather than using letters!
©@Al1Chains = $PDB->IdentifyChainLabels (Model => 0);
e —>TdentifyResidues
Returns an array with all internal residue sequence numbers.
Q@Al1lResidues = $PDB->IdentifyResidues (Model => 0, Chain => 0);

e —>TIdentifyResiduelabels

Returns an array with all external residue labels (e.g. ALA, TYR, ...).
O@Residuelabels = $PDB->IdentifyResiduelLabels (Model => 0, Chain => 0);

This array represents the sequence of the amino acids in the requested chain. If one-letter-codes

are preferred, the parameter OneLetterCode may be set to 1:
@Residuelabels = $PDB->IdentifyResiduelabels (Model => O,
Chain => 0, OneLetterCode => 1);

Mind, that OneLetterCode only makes sense, when no hetero atoms are in the PDB, that is
for example, NoHETATM is set to 1. The method will nevertheless return undef for “unknown”
residues like metals or water to ensure the comparability of returned arrays (that for the same

search parameters like Model 0, Chain 0, a certain index will always belong to the same residue).
->IdentifyResidueNumbers

Returns an array with all external residue numbers (including the inserted residue tag if present).
Beware of multiple numbers due to the restart of the numbering in every model (or even in
every chain, depending on how crappy the file is). To be on the safe side, always specify
model and chain or use ->RenumberResidues prior to ->IdentifyResiduesNumbers. If model

is omitted, 0 is taken as default value, if no chain is specified, all chains are processed.
OResidueNumbers = $PDB->IdentifyResidueNumbers (Chain => 0);

->IdentifyAtoms

Returns an array with all internal atom numbers of the requested model, chain or even residue.
Q@AllAtoms = $PDB->IdentifyAtoms (Model => 1, Chain => 0);
->IdentifyAtomNumbers

Returns an array with all external atom numbers.

Q@A11AtomNumbers = $PDB->IdentifyAtomNumbers (Chain => 0);

->IdentifyAtomTypes

Returns an array with all available atom types (e.g. 'CA’, "CB’, 'O’) that can be used to filter the
atoms with ->Get (AtomType => ...).

Q@Al11AtomTypes = $PDB->IdentifyAtomTypes (Chain => 0);
->IdentifyElements

Returns an array with all available atom elements (e.g. 'C’, 'N’, "O’) that can be used to filter the
atoms with ->Get (Element => ...). To refine the filter pattern, you need to edit the filter
variables at the very beginning of ParsePDB.pm.

@AllElements = $PDB->IdentifyElements (Model => 0, Chain => 0);

6 Count Number of Subgroups of the Protein

e ->CountModels
Returns the number of models in the PDB.
$ModelNumber = $PDB->CountModels;
e —>CountChains
Returns the number of chains in a model. If no model is given, 0 is taken by default.
$ChainNumber = $PDB->CountChains (Model => 2);
e —>CountAtoms

Returns the number of atoms in the specified part of the protein. If no model is given, 0 is
taken by default. ATOM and HETATM lines are treated equally, if you do not want to process
HETATMs filter them out via NoHETATM = 1, see ->new.

$AtomNumber = $PDB->CountAtoms (Model => 0, Chain => 2);

If you need HETATMs but want to determine the number of ATOMs or HETATMs in one model

or chain, you can use the parameter Race => "ATOM"

$AtomNumber = $PDB->CountAtoms (Model => 0, Chain => 2, Race => "ATOM");
e ->CountResidues

Returns the number of residues. If no model is given, 0 is taken by default.

$ResidueNumber = $PDB->CountResidues (Model => 0, Chain => 1);

7 Retrieve a Part of the PDB with —>Get

The method ->Get is the universal tool to retrieve content from the parsed PDB. The information
gathered via the Identify or the GetIdentifier methods can be fed into ->Get to retrieve the

respective PDB lines.

Although ->Get can handle external identifiers, the access is much more efficient (faster!) via the

internal ones, since the former have to be translated before the content can be retrieved.

@Chain2 = $PDB->Get (Model => 0, Chain => 0);

7.1 Parameters for - >Get

The following Parameters can be used to request a specific part of the protein from ->Get, including
several possibilities to change it to certain needs.
e Model => 0 | 1 | 2 | ... (internal value)
ModelNumber => 1 | 2 | 3 | ... (external value from the PDB)

The number of the model. The available model identifiers can be retrieved using ->IdentifyModels

and ->IdentifyModelNumbers.
e Chain => 0| 1| 2| ... (internal value)
ChainLabel => ’A’ | ’B’ | °C’> | ... (external value)

The number of the chain. The available chain identifiers can be retrieved using ->IdentifyChains.
Using the latter method is only possible, if the chain IDs have been checked successfully and
no duplicate or missing IDs have been found. This means that (if you want to access the chains

via their ID) you have to add an if condition to check whether you can do so or not.
$PDB->ChainLabelsValid

— returns true if the chain IDs are OK;

- returns false if missing or multiple chain IDs have been detected.

To get the “real” chain IDs, use ->IdentifyChainLabels, to get the ID for a particular chain,

use ->GetChainLabel (see further down).

e Residue => 1 | 2 | 3 | ... (internal value)
ResidueNumber => 1 | 2 | 3 | ... (external value)
Returns the ATOM lines of a particular residue

e Residuelabel => °’ALA’

Returns only alanine residues

10

e Atom => 11 2| 3| ... (internal value)
AtomNumber => 1 | 2 | 3 | ... (external value)
Returns the ATOM line of a particular atom

o AtomType => ’CA’

Returns only CA atoms. To distinguish between a carbons and calcium, enter “Ca” for the
latter. To retrieve only carbons, use Race => "ATOM" which filters out all HETATMs.

e Element => °C’ | ’0’ | °’N’ | "H’
Return only carbons, oxygens, etc. This will also get “"CA” or “OXT”. To refine the filter pattern,
you need to edit the filter variables at the very beginning of ParsePDB.pm.

e Header => 0 | 1

Include the header true/false. If a parsed content is requested via the AtomIndex keyword, the
first six characters of the line are stored as Race (similar to atoms) and the remaining columns

are stored in Rest.
By default the header is NOT included.
e MinHeader => 0 | 1

Include just a minimal header true/false. This is false by default. If set true, only lines begin-
ning with HEADER, TITLE or COMPND are returned. This command overrides the value of
HeaderRemark, that is, no remark will be added to a minimal header. If the choice of lines
needs to be changed, this can be done in ParsePDB.pm at the beginning of the code under

default variables.

If MinHeader is given, the Header keyword can be omitted.
e Footer => 0 | 1

Include the footer true/false. By default the footer is NOT included.
e MinFooter => 0 | 1

Include just a minimal footer true/false. This is false by default. If set true, only the line
beginning with END is returned. If additional other lines are needed, this can be changed in

ParsePDB.pm at the beginning of the code under default variables.
If MinFooter is given, the Footer keyword can be omitted.
e ModelStart => value

Renumber the Models in the returned content. This does not affect the main hash, that is,
the content is renumbered after it was extracted. To renumber globally, see RenumberModels

instead.

11

e ChainStart => letter

Renumber the chain IDs of the returned ATOM and HETATM lines starting with the given
letter. The letter is processed case-sensitive. If the letter 'Z’ is reached during renumbering,
the next chain will be “a’, continuing with non-capital letters. After reaching z the number 0-
9 are used. Proteins larger than that require to start again with A-Z. This does not affect the
main hash, that is, the content is renumbered after it was extracted. To renumber globally, see

RenumberChains instead.
e ResidueStart => value

Renumber the residue numbers of the returned ATOM and HETATM lines sequentially starting

at ‘value’ (or 1 by default). See also RenumberResidues.
e AtomStart => value

Renumber the returned ATOM and HETATM lines sequentially starting at value or 1 if no value

is given. See also RenumberAtoms.
e KeepInsertions => 0 | 1

If set to 0, the insertion codes of residues are considered during renumbering the residues.

Please read "Filtering the data” for more information.

e SetChainLabel => ’ > | A’ | ’B’ |
Changes the chain ID of all returned ATOM, SIGATM, ANISOU, SIGUIJ and HETATM lines.
By giving a blank the chain label can be removed.

CAUTION: This function should be used carefully! It does not care about multiple chains and
will simply change every ID to the given value! To “renumber” the chains use the ’ChainStart’-

keyword instead.

e PDB2CHARMM => 1
Formats the returned array for the use with CHARMM. Read further down for more informa-

tion.

e CHARMM2PDB => 1
For the use with CHARMM-created PDBs, replaces the atom types of CHARMM with the stan-
dard PDB labels. Read further down for more information.

e AtomLocations => First | All | None | A’ | ’B’ | etc.

If alternative atom locations for an atom are available, return either only the first, all or none of

them. The switches are not case-sensitive.

If "First’ is requested, the filter returns all atoms with location A’ as well as the ones, which

have NO alternative location.

If you enter "A’, ONLY atoms with altLoc "A” are retrieved. If you want to get also the ones with

no altLoc, you have to request "(A|). Please see "Filtering the data” for more information on

12

the location indicators in the ATOM line.
AtomIndex => 1

This can be a very handy command, especially if the parser is only used to retrieve the chains
one after another. AtomIndex tells ->Get to return not the original ATOM lines from the PDB
but the fully parsed entries. That is, each line (atom) in this array is a hash in which the respec-
tive ATOM line is broken down into its parts (see also ->new for the used scheme).

@Content = $PDB->Get (AtomNumber => 5);
Content [0] = ’ATOM 5 CB AVAL A 1 1.224 33.077 8.946 1.00 13.10°

Q@Content = $PDB->Get (AtomNumber => 5, AtomIndex => 1);
$Content [0] = {
’Race’ => ’ATOM’,
’AtomNumber’ => ’5’,
’AtomType’ => ’CB’,
’AltLoc’ => A’
’Residuelabel’ => ’VAL’,
’ChainLabel’ => ’A’,
’InsResidue’ => 7,
’ResidueNumber’ => ’17,
’x? => 21.224°,
Yy? => ’33.077°,
7z’ => ’8.946°,
’Occupancy’ => ’1.0°,
’Temp’ => ’13.107,
’Rest’ => 1TBE 113°,
}

ResidueIndex => 1

This switch is even more powerful than AtomIndex and returns the parsed information of the
latter divided up into residues while still providing the same information of AtomIndex on a
per-residue basis. The parsed information for each individual residue is available and for each
its atoms can be accessed either via an array (by looping over them) or via a hash using their

atom types as keys.

@Content = $PDB->Get (ResidueNumber => 12, ResidueIndex => 1);
$Content [0] = {
’Atoms’ => array reference with the parsed atom lines,
’AtomTypes’ => hash reference with the parsed atom lines,
’InsResidue’ = > 7,
’Phi’ = ’-120.237,
’Psi’ = ’104.127,
’Residuelabel’ = ’ALA’,
’ResidueNumber’ = ’12’

}

Note that the phi and psi angles are not computed automatically. In order to have them in
@ResidueIndex, ->GetAngles (without any parameters) has to be executed once. The angles

are then calculated for the whole file and saved.

In the above example a single residue is retrieved (having the external number 12) and there-
fore only one array element is returned. This can of course be used for a whole chain to con-

veniently loop over each residue and each atom within it. The atoms are available in the array

13

Atoms which comes in handy if every single one needs to be accessed one after another. If par-
ticular atoms are needed (like only the C, carbon for example) they can be accessed via the
AtomTypes hash. The same can be achieved directly via ->Get by requesting a specific atom
type in a residue, however, if this is needed for every residue in a protein the approach via the

ResidueIndex is by orders of magnitudes more efficient.

The hash AtomTypes is only generated if the atom types are unambiguous. That is, if one type is
found more than once, the key AtomTypes of this residue will be removed since the integrity of
the atom type cannot be assured. If used in a script, the absence of this key points to problems

with the atom types and the array can be used instead to find out what is wrong in the PDB.
The following example shows the result of the query
@Content = $PDB->Get (ResidueNumber => 1, Residuelndex => 1);

for a residue containing two atoms with the atom types CA and 0:

$Content [0] = {
’AtomTypes’ => {
:CA; => {
’AltLoc’ => A7,
’AtomNumber’ => ’37,
’AtomType’ => ’CA’,
’ChainLabel’ => ’A’,
’InsResidue’ => ’ 7,
’Occupancy’ => ’0.0°,
’Race’ => ’ATOM’,
’Residuelabel’ => ’ALA’,
’ResidueNumber’ => ’1°’,
’Rest’ => 7’ c
’Temp’ => ’27.847,
’x? => ’-10.309’,
’y? => ’53.9107,
’z? => 25,295’

b

o
)OJ =>
’AltLoc’ => A7,
’AtomNumber’ => 47,
’AtomType’ => °0’,
’ChainLabel’ => ’A’,
’InsResidue’ => ’ 7,
’Occupancy’ => ’0.0’,
’Race’ => ’ATOM’,
’Residuelabel’ => ’ALA’,
’ResidueNumber’ => ’1°,
’Rest’ => o °’,
’Temp’ => ’27.807,
’x? => ’-9.414,
’y’ => ’53.3667,
’z? => ’24.654°

},
’Atoms’ => [
{
’AltLoc’ => ’A’,
’AtomNumber’ => ’3’,
’AtomType’ => ’CA’,
’ChainLabel’ => ’A’,

14

’InsResidue’ => ’ 7,
’Occupancy’ => ’0.0’,
’Race’ => ’ATOM’,
’Residuelabel’ => ’ALA’,
’ResidueNumber’ => ’1°,
’Rest’ => c
’Temp’ => ’27.847,

’x? => ’-10.309°,

’y? => ’53.910°7,

’z? => 225,295’

b

’AltLoc’ => A,
’AtomNumber’ => ’4°’,
>AtomType’ => 07,
’ChainLabel’ => ’A’,
’InsResidue’ => ’> 7,
’Occupancy’ => ’0.0’,
’Race’ => ’ATOM’,
’Residuelabel’ => ’ALA’,
’ResidueNumber’ => ’1°,
’Rest’ => o
’Temp’ => ’27.807,

’x? => ’-9.414’,

’y? => ’53.3667,

’z? => ’24.654°

b

}

1,
’InsResidue’ => ’> 7,
’Residuelabel’ => ’ALA’,
’ResidueNumber’ => ’1°

};

With @ResiduelIndex it is easy to loop over the whole chain residue per residue and even over

each atom in the residue:
O@ResidueIndex = $PDB->Get (Chain => 0, Residuelndex => 1);

foreach $Residue (@ResiduelIndex) {
print "$Residue->{Residuelabell}\n";
print "$Residue->{ResidueNumber}\n";
print "$Residue->{Phi} $Residue->{Psi}\n";

foreach $Atom (@{$Residue->{Atoms}}) {
print $Atom->{AtomNumber}, "\n";
print $Atom->{ChainLabel}, "\n";
}
}

The TER is not counted as part of the residue, that is it will not be included in the last residue

of a chain.

The filter arguments are accumulative and can be freely combined to filter out all CA atoms in all
alanine residues for instance. They are just working on the atom lines, all other lines like MODEL,

TER, etc. are also returned.

The ->Get routine returns the whole PDB with the MODEL/ENDMDL tags and one single Model
without them but with the TER terminators of the chains.

15

If the "Model” or “Chain” parameter is omitted, it depends what happens:

e no Model, no Chain:

returns the whole file (without header and footer)

e Model, but no Chain:

the whole model with all chains is returned

e Chain, but no Model:
Model is assumed as “0”, e.g. if no MODEL tags are there at all

7.2 Internal Versus External ldentifiers

As previously mentioned, the use of internal identifiers (see 3) is preferable. First of all it is easier to
program as e.g. the ResidueNumbers or AtomNumbers have to be retrieved at first to loop over them
and extract single objects. And second of all for speed reasons, as it is quite elaborate for the parser

to interconvert external and internal identifiers.

Atoms and residues always have an external number, however, PDBs with invalid numbering schemes
are even found in the Protein Data Bank. The worst case are double atom numbers, in which case
only the first atom is returned if it is tried to access them via the AtomNumber. For residues, the num-
bers may also contain letters in case of inserted residues like 34A. In most of the PDB files, only one

model exists and this is usually not explicitly named, thus it possesses no external number.

The biggest problem are chain IDs. Very often, chains are not named at all (empty chain ID) or
double IDs exist (like A, B, A, B). In both cases, ChainLabel cannot be used to access the chains.
Every used model is checked right after parsing for those errors. Each use of ChainLabel triggers a
check whether the chain IDs of the current model have passed this check and are valid. If they are

invalid, a warning is issued, the parser stops processing and returns undef.

It is also possible for the user to determine, whether external chain identifiers can be used for a model:

if ($PDB->ChainlabelsValid (Model => 0)) { ... }
else { ... }

As usual, the method defaults to model 0, if no parameters are given. If the chain labels are invalid,

the chains need to be renumbered, before they can be accessed via ChainLabel.

16

8 Write the Whole or Parts of the PDB

To write out specific parts of the PDB, the method ->Write is used. All parameters are identical with
->Get, so it is possible to write out for example only certain atom types or all alanine residues and

SO on.
$PDB->Write (FileName => "file.pdb");

Header and Footer are included by default. The parameter FileName is mandatory, if it is omitted,

the method throws a NoFile error.

Sometimes it is required to split a protein into its models or chains. Since that is a standard task, there

are two methods for it.

Q@Al1Models

$PDB->WriteModels; # extract all models in single files

©@Al1Chains $PDB->WriteChains; # extract all chains in single files

Most parameters of these two methods are identical with ->Get. Header and Footer are included by

default. If the parameter “FileName” is omitted, the base name of the PDB is taken.

The suffix defined via ->new (ModelSuffix or ChainSuffix) is added plus the chain or model number,

for example:

file cl.pdb
file c2.pdb
file_c3.pdb

An array containing the names of the created files is returned.

->WriteChains can also write the chain IDs as letters instead of numbers. Numbers are the default, if
letters are desired, ChainLabelAsLetter has tobesetto 1 via->new() or ->SetChainlLabelAsLetter.
If ->ChainLabelsValid returns false, the setting is ignored and chains can only be accessed via their

sequential numbers given by ->IdentifyChains.

If no Model is given to ->WriteChains, “0” is taken by default. The routine can just process one
model at a time. To loop over all models, the information provided by the method ->IdentifyModels
can be used. When all models are processed, something like "FileName => "$BaseName-$Model"

should be defined as file name.
The following (additional) parameters can be given to ->WriteModels and ->WriteChains.
e ModelSuffix => "-model-"

To change the default suffix "-m”.

e ChainSuffix => "-chain-"

17

To change the default suffix ”-c”.
e PDB2CHARM => 1

To write CHARMM-Input-Files. Read further down for more information.
e CHARMM2PDB => 1

To convert CHARMM-generated PDB format to the PDB standard. Read further down for

more information.

Retrieve Certain Information About the Protein

e —->GetModel
Returns the internal number of an external ModelNumber
$Model = $PDB->GetModel (ModelNumber => 4);
e —>GetModelNumber
Returns the external number of an internal Model
$ModelNumber = $PDB->GetModelNumber (Model => 1);
e —>GetChain
Returns the internal number of an external ChainLabel
$Chain = $PDB->GetChain (Model => 1, ChainlLabel => ’A’);
e —>GetChainLabel
Returns the “real” chain ID for a particular chain, undef if no ChainLabel is set.
$ChainLabel = $PDB->GetChainlabel (Model => 1, Chain => 1);
e —->GetResidue
Returns the internal number of an external ResidueNumber.
$Residue = $PDB->GetResidue (Model => 1, ResidueNumber => 5);
e —>GetResiduelabel

Returns the label of the residue with a given residue number (usually the amino acid). The
number can be either the external one indicated by the keyword ResidueNumber” or the internal

one by giving the Residue keyword.

The available numbers can be retrieved via ->IdentifyResidues and ->IdentifyResidueNumbers
and the returned values can be fed into ->Get via Residue => "value" or ResidueNumber =>

"value" respectively.

$Residuelabel

$PDB->GetResidueLabel (Residue => 2);

$Residuelabel

$PDB->GetResiduelLabel (ResidueNumber => 2);

18

e —->GetAtom
Returns the internal number of an external AtomNumber.
$Atom = $PDB->GetAtom (AtomNumber => 17);
o —>GetAtomNumber
Returns the external number of an internal atom number.
$AtomNumber = $PDB->GetAtomNumber (Atom => 0);
o —->GetAtomType

Returns the type of the atom with a given atom number. The available numbers can be re-

trieved via ->IdentifyAtoms and the returned value can be fed into ->Get via AtomType =>

"type".
$AtomType = $PDB->GetAtomType (Atom => 2); # internal
$AtomType = $PDB->GetAtomType (AtomNumber => 3); # external

e ->GetElement

Returns the element of the atom with a given atom number. The available numbers can be
retrieved via ->IdentifyAtoms and the returned value can be given to ->Get via Element =>

"element".
$Element = $PDB->GetElement (Atom => 5);

If you plan to use the Residuelndex or AtomIndex later on and need the Element, you can call
the routine without parameters, which will save the element information to the main hash, that

is it will then be available in the returned Residuelndex and AtomIndex, respectively:
$PDB->GetElement;
e ->GetCoordinates

Returns a 2-dimensional array with the coordinates of the requested atoms (all parameters like
Model, Chain and the filter commands are given to ->Get and all lines not beginning with
ATOM (e.g. TER) are ignored).

CAUTION: All coordinates are returned, regardless of how many chains are retrieved from
->Get. So be careful to specify a particular one!

@Coordinates = $PDB-$>$GetCoordinates (ChainLabel => ’A’);
print "First Atom: x $Coordinates[0]->{x},

y $Coordinates[0]->{y},

z $Coordinates[0]->{z}\n";

e —->GetAngles

19

Returns a hash with the ® and ¥ angles of a chain or a residue. Remember that for the first
residue of a chain, no ® angle is defined whereas the last one does not have a ¥ angle (the

angles are then given as 360°).

The angles are returned in an array (if only one residue was processed, only the first element
is filled). The routing calculated the bond distance between two residues. If it is too big (for
example between two chains or if a residue has been removed for same reason), the respective

angle is given as 360°.

%Angles = $PDB->GetAngles (Residue => 2);

%Angles = $PDB->GetAngles (ResidueNumber => 2);
print "Phi angle: $Angles[0]{Phi}\n";
print "Psi angle: $Angles[0]{Psi}\n\n";

If a certain model or chain is processed with the method, the calculated data is only returned,
but not saved for later use. Sometimes it is more handy (and faster) to simply calculate all

angles in one go and retrieve them later on with other information.
This can be achieved by calling the method without any parameters:
->GetAngles; # to calculate and save all dihedral angles

The computed angles are then included in the ResidueIndex which can be retrieved from

->Get.
->GetSection

To fetch certain information from header or footer. All lines starting with the given pattern are

returned.
@Section = $PDB->GetSection ("CONECT");
->GetResolution

Returns the resolution in Angstroms that was used for building the model. If no REMARK 2

field or no resolution is given, undef is returned.
$Resolution = $PDB->GetResolution;
->GetHeader

Returns the header (everything until the first MODEL or ATOM). The parameter MinHeader

=> 1 can be given to get only a minimal header.
OHeader = $PDB->GetHeader;
->GetMinHeader

This is a shortcut to retrieve a minimal header.

@MinHeader = $PDB->GetMinHeader;

20

e ->GetFooter

Returns the footer (everything after the last ATOM, HETATM, TER or ENDMDL). The param-

eter MinFooter => 1 can be given to get only a minimal footer.
Q@Footer = $PDB->GetFooter;

e —>GetMinFooter
This is a shortcut to retrieve a minimal footer.

OMinFooter = $PDB->GetMinFooter;

10 Renumbering Entries in the PDB

To renumber the protein globally, the following methods can be called directly:
$PDB->RenumberModels (ModelStart => 3);

$PDB->RenumberChains (ChainStart => ’G’);

$PDB->RenumberResidues (ResidueStart => 5);

$PDB->RenumberAtoms (AtomStart => 5);

When renumbering chains, the letter is processed case-sensitive. If the letter 'Z" is reached during
renumbering, ‘a’-’z’ will be used and "0’-"9" after non-captials have been used up. Proteins larger
than that require to start again with A-Z, which leads to duplicate chain labels and some routines
(e.g. the retrieval of chains using the chain label) will not work then. However, this is a shortcoming
of the PDB standard with the chain label being restricted to one character. The parser will not return

a chain based on its chain label, if multiple possibilities are found.

If the Start-parameters are omitted, 1 and "A’ (for chains) are taken by default.

Be aware that after renumbering, some information in the header and footer does not fit to the atom
numbers any more (e.g. SSBOND, HELIX, CONECT)! The numeration of chains restarts in each

model.

If the main content should not be altered or for instance every retrieved chain must start at 1, the
Start parameters can be given to ->Get, which then renumbers only the filtered content but not
the main hash itself. That way, one can extract all alpha carbon atoms and still have a sequential

numbering:
@Content = $PDB->Get (AtomType => ’CA’, AtomStart => b)

Only the returned array is renumbered, leaving the internal data untouched.

21

10.1 Renumbering Inserted Residues

When inserted residues are contained in the PDB, they usually have the same residue number as
the residue before with an added inserted residue tag, e.g. residue 21 and 21A. If the insertion codes
should be considered, that is if you want to preserve this numbering scheme explicitely, you can set

the parameter KeepInsertions to 1.
$PDB->RenumberResidues (KeepInsertions => 1);

Since "1’ is the default for KeepInsertions, it is more likely needed when you need to turn it off if you
want to remove the inserted residue tags and have each residue numbered with a different number.
Be aware, that inserted residues might be superpositions instead of insertions. ->RemoveInsertedResidues
checks the distances of the atoms of each residue with an InsResidue tag and removes only the ones
which are indeed superpositions, whereas real insertions are kept. That means, after you have exe-
cuted RemoveInsertedResidues, you can safely renumber the residues discarding their InsResidue

tag with

$PDB->RenumberResidues (KeepInsertions => 0);

10.2 Ignoring the TER

According to the PDB manual, a TER line has its own atom number, i.e. it counts as an atom. If you
for some reason need all atoms to be numbered sequentially without counting the TER, you can set

IgnoreTER true. The TER line will then have the same atom number as the atom before:
$PDB->RenumberAtoms (IgnoreTER => 1);

Please see also further down chapter 12, “Filtering the data”.

22

11 Generating CHARMM input files

Working with CHARMM usually is a pain somewhere where you don’t want it. At least the parser
is able to solve some of the problems. The main pain is that CHARMM can only process one chain
at a time. Although it is possible to give the "PDB2CHARMM => 1" parameter to ->Get and every

related method, you will use ->WriteChains most of the time.

If you use another method, please remember to work with only one chain to produce a valid input
file.

@CHARMMFiles = $PDB->WriteChains (PDB2CHARMM => 1);

To convert the CHARMM PDB output files to standard format, use the realted method CHARMM2PDB
equivalently with ->Write or ->Get.

11.1 What it does

All chains are written into seperate files

All residues are renumbered sequentially starting at 1 in each chain

"HIS” is replaced with "HSD”

the last O is renamed OT1, OXT is renamed OT2

All atom types are replaced according to this list:

http://www.bmrb.wisc.edu/ref _info/atom nom.tbl

When more than one chain is detected, a warning will be issued that CHARMM is unable to process

more than one chain at a time.

11.2 What it does not do

e Terminal acetyl groups

Sometimes proteins have a terminal acetyl group on the amino end which needs to be patched
to work with CHARMM. It might also be that it needs to be counted to the first residue (usually

it is numbered as residue 0). In that case, ResidueStart => 0 can be given.
e Prosthetic Groups

Sometimes PDB files contain coordinates for non-peptide groups (crystallographic waters, haem
groups, metal ions, etc). CHARMM can deal with these, but it can be very difficult to do. If
you need to include them, split them up into their own PDB files. That means that you might
even have to split up a block of HETATMs into several files (e.g. waters, haem groups and other
stuff).

23

e Disulphide bridges
PDB files hold information on disulphide bridges with the SSBONDS keyword. CHARMM

ignores this. You must specifically add these using the PATCH command, for example
PATCH DISU prot 2 prot 11
creates a disulphide bond between residues 2 and 11 of the protein with the segment id “prot”.

CAUTION: The residue number might have changed since they are auto- matically renumbered

so that they start counting at 1!
e Protonation state

You should consider carefully the protonation state of your titratable residues, e.g. a histidine
could be protonated, in which case it should be changed from HSD to HSE. Assuming residue
29 in a segment named “prot” was a histidine that should be protonated, the following patch

command would accomplish this:
PATCH hs2 prot 29
rename resn HSE sele resi 29 end

There’s no easy way to decide if a residue should be modified. One way is to check if there are
any H-bond donors or acceptors close to specific atoms (e.g. ring nitrogens in histidine). There

may also be comments in the PDB file.

12 Filtering the Data

12.1 Keywords for filtering actions

The returned data of ->Get and ->Write can be filtered using the keywords Model, ModelNumber,
Chain, ChainLabel, Residue, ResidueNumber, ResiduelLabel, Atom, AtomNumber, AtomType, Element

and Race. Please see ->Get for more information.

ATOM 554 CA 1ILE B 4 55.013 57.563 15.473 6.00 5.58
| [[|

| [[|

| [| Residue (internal)

| || [ResidueNumber (external)
| [[

| [| Chain (internal)

| [| ChainLabel (external)

| [|

| |] Residuelabel => ’ILE’

| [

| | AtomType => ’CA’

| | Element => ’C’

| |

| Atom (internal)

| AtomNumber (external)

Race

24

12.2 Inserted Residues

If evolution has found it clever for some reason to insert some residues in a protein, we're left with a
mutant that has the same amino acid sequence as its "parent” except for a few residues somewhere in
the middle. To maintain comparability, these additional residues often have the same residue number

with an additional letter to distinguish between them.

When renumbering the residues with the parameter ’KeepInsertions => 0°, the insertion codes
will be removed and all residues numbered with a different number. ’KeepInsertions => 1’ (de-

fault) will keep the code and the same residue number.

ATOM 157 N ARG 36
ATOM 1568 CA ARG 36
ATOM 159 C ARG 36
ATOM 160 0 ARG 36
ATOM 161 CB ARG 36
ATOM 162 CG ARG 36
ATOM 163 CD ARG 36
ATOM 164 NE ARG 36
ATOM 165 CZ ARG 36
ATOM 166 NH1 ARG 36
ATOM 167 NH2 ARG 36
ATOM 168 N SER 36A
ATOM 169 CA SER 36A
ATOM 170 C SER 36A
ATOM 171 0 SER 36A
ATOM 172 CB SER 36A
ATOM 173 0G SER 36A
ATOM 174 N GLY 36B
ATOM 175 CA GLY 36B
ATOM 176 C GLY 36B
ATOM 177 0 GLY 36B
ATOM 178 N SER 36C
ATOM 179 CA SER 36C
ATOM 180 C SER 36C
ATOM 181 0 SER 36C
ATOM 182 CB SER 36C
ATOM 183 0G SER 36C
I

Inserted residues A, B, C (column 27)

.498 21.150 28.984
.066 21.087 27.635
.1563 20.325 26.712
.720 19.206 27.052
.437 20.435 27.542
.490 21.213 26.764
.474 20.233 26.120
.840 19.039 26.969
.566 17.748 26.564
.793 17.540 25.474
.990 16.634 27.226
771 21.064 25.675
.791 20.697 24.655
.435 20.746 23.257
.539 21.844 22.669
.734 21.806 24.772
.709 21.554 23.828
.196 19.668 22.952
.090 19.571 21.796
.416 20.232 22.102
.103 19.879 23.089
.580 21.333 21.367
.647 22.291 21.565
.085 23.567 22.177
.667 24.643 22.026
.228 22.641 20.183
.437 23.401 20.316

QOO NONOOOUFRLNPEREPRWPRPROOOOWOWOONPROITOO
RRRRRRRRPRRRPRRRERRERERRERRRRARRRRERRBRRR
o
o
w
[0))

o
[0))

[y

A big problem which has to be taken into account are PDB files, which use the inserted residue tag to
mark alternative residues, that is, residues superimposed with others like ALA and LEU at the same
position for example. Without checking the atom distances or the header remarks, it is not possible

to distinguish between inserted residues and alternative residues.

If it is important, that the chain has no such alternatives, they can be reliably removed using the
method ->RemoveInsertedResidues. It loops over all residues with an inserted residue tag, checks
the atom distances with the neighbouring groups and removes only residues if they are superposi-

tions.

$PDB->RemoveInsertedResidues;

25

If it is really important that there are no superpositions and the PDB file might be crappy enough that
the inserted residue tags are not reliable, the parameter Intensive can be set true, what will then

cause a check off all residues in the protein.
$PDB->RemoveInsertedResidues (Intensive => 1);

If superpositions are found, the residue with an InsResidue tag is removed, it does not matter,
whether the sequence is 36, 36A or the other way round. If none of them possesses an InsResidue

marker, the second one is removed.

In all cases, a warning is issued, stating the ResidueNumbers (the external ones for easy comparison

in the PDB file) and which of them was removed.

12.3 Alternative Atom Locations

If some atoms showed a deviation during the structural elucidation of the protein via NMR or X-Ray,
the alternative locations are sometimes stated within the same model, instead of in a second one. The
alternate location indicator is usually "A” or ‘B’, but has also been found as '1” and "2’. The parser

detects the used method automatically.

ATOM 143 N SER 18 7.902 9.621 14.878 1.00 8.15
ATOM 144 CA SER 18 6.436 9.552 14.567 1.00 10.68
ATOM 145 C SER 18 6.287 9.730 13.049 1.00 10.82
ATOM 146 0 SER 18 7.124 10.246 12.306 1.00 11.90
ATOM 147 CB SER 18 5.687 10.570 15.337 1.00 14.98
ATOM 148 0G ASER 18 6.225 11.165 16.468 0.50 14.28
ATOM 149 0G BSER 18 6.181 11.830 15.086 0.50 9.85

Alternative atom location A and B (column 17)

The alternative atom locations can be removed using the AtomLocations keyword via ->new or

->SetAtomLocations.
$PDB->SetAtomLocations (’First’);

This will enable the filtering of the additional atoms and return only the first one. If these atoms
are not needed anyway, they can be removed entirely with ->RemoveAtomLoactions and the same

keyword, which denotes the atoms which are kept:
$PDB->RemoveAtomLocations (AtomLocations => ’First’);

This deletes all atoms with multiple locations and keeps just the first one. See ->new for more infor-
mation. If no parameter is given, the default is taken, which is set to “All” and therefore does not do

anything.

26

13 Other methods

13.1 ->GetFASTA

Returns an array with the FASTA format lines. A model number has to be provided, otherwise model
01is taken as default. To process only a single chain, Chain or ChainLabel can be specified. A standard
header line is added before a new chain begins and a newline character is added if the sequence line

with the one letter codes of the amino acids is 80 characters in length.

The method only processes a chain if there are ATOMs in it, that is, HETATM chains are ignored. If a

residue label cannot be converted into the one letter code, a warning is issued by AminoAcidConvert.

QFASTA = $PDB->GetFASTA (Model => 0);

13.2 ->VWriteFASTA

Writes a FASTA file of the protein. If a file name is provided, the extension .fasta is added. If the file
name is omitted, the base name of the original PDB file is taken. The method returns the array with
the FASTA lines, if they are needed for anything else (and if only for checking whether anything was

written at all).

->WriteFASTA (Model => 0, FileName => "4mbn")
13.3 ->AminoAcidConvert

Converts a 1-letter-code into a 3-letter code and vice versa.
$Code = $PDB->AminoAcidConvert ($Code);

13.4 ->FormatLine

Returns a string in PDB format from a given atom hash. For many problems working with the Atom-
Index is by far easier and faster than retrieving the complete PDB line, e.g. for more complex filtering
actions than possible via ->Get. However, if a PDB needs to be written, retrieving the formatted PDB
line as well is circumstantial and time consuming, especially if it needs to be tweaked somehow. In
such a case, the filtered and/or changed atom hash from the atom index can be given to the routine,

which returns the formatted line that can be written to a PDB.

@AtomIndex = $PDB->Get (Model => 0, Chain => 0, AtomIndex => 1);

foreach $Atom (@AtomIndex) {

27

some fancy if-condition here or changes to the atom hash
$Line = $PDB->FormatlLine (Atom => $Atom);
print PDB $Line;

14 Speed issues

There are a few things you should know, if speed is an issue for your work. As long as you work
with a single file of a normal size, the way how you use the parser will not make a big difference. As
soon as you have to process a load of PDBs, with ten thousands of atoms, you might want to consider

some facts of the way the PDB is treated during the parsing.

First of all, remove everything you do not need. If you do not process HETATM, SIGATM, ANISOU
or SIGUIJ entries, remove them even before parsing with the respective switches of ->new or the
respective ->SetVariable methods. This speeds up the parsing, even if none of these atoms are
present, since the regular expressions which determine an atom become significantly smaller. And

RegExes are pigs when it comes to speed...

The use of external numbers is an absolute no-no in speed critical programs. Each external param-
eter is converted to the respective internal one prior to processing the request. This is reasonably fast
for models and chains, but comes down to a loop over the atom lines for a residue or an atom number,
until the correct one is found. This could have been solved faster by a hash key for each external num-
ber but this would raise lots of problems with inserted residues, alternative atom locations, crappy
PDB files and would extremely slow down many methods like “Renumber” for example and the idea

was therefore discarded.

The access of whole chains is the fastest of all (compared to models, residues and atoms). In other
words, the parser is quite optimized for that. Thus, extracting each single atom one by one would be
about an order of a magnitude slower than to extract the whole chain and looping over the lines in it.
If a residue is requested, the parser has to determine the chain, then looks up the atoms which belong
to that residue, extracts and filters the lines and returns them. In any case it speeds up processing if
the chain is specified, so rather than looping over the whole model, loop over each chain and process

the residues or atoms.

Two of the most powerful switches of ->Get are AtomIndex and ResidueIndex. They provide the
possibility to extract the readily parsed atom lines instead of the original strings and break a chain
down into residues in just one parser query. Therfore, using these switches you can spare cutting
the line yourself with substr or requesting lots of information like AtomType, AtomNumber and so on

with the respective ->Get method.

As a ready-made code snippet, the fastest way to access each atom line in a file is the following:

28

if the dihedral angles are needed
$PDB->GetAngles;

@Models = $PDB->IdentifyModels;
foreach $Model (@Models) {
@Chains = $PDB->IdentifyChains (Model => $Model);

foreach $Chain (@Chains) {
if the residues are not needed to be processed as a whole
@AtomIndex = $PDB->Get (Model => $Model, Chain => $Chain, AtomIndex => 1);

foreach $Atom (@AtomIndex) {

do some stuff with each atom
print "$Atom->{x} $Atom->{y} $Atom->{z}\n"

—_—

or alternatively, if the residues need to be processed one by one
OResiduelIndex = $PDB->Get (Model => $Model, Chain => $Chain, ResidueIndex => 1);

foreach $Residue (@ResidueIndex) {
do some stuff with each residue
print "$Residue->{Phi} $Residue->{Psi}\n\n";

foreach $Atom (@{$Residue->{Atoms}}) {
do some stuff with each atom
print "$Atom->{x} $Atom->{y} S$Atom->{z}\n"

}
} # of foreach $Chain
} # of foreach $Model

29

15 Error handling

The error handling of ParsePDB consists of two levels:

e warnings which are reported and give hints for possible problems but do not cause the pro-

cessing to be aborted

e errors which are fatal and cause ParsePDB to abort the processing

If you are not familiar with the try/throw /catch-methodology have a look at the documentation of
Error.pm. In case you do not make use of this, the program dies as any other program does, issuing
the respective error message. However, if you catch the error in the main program, it will “survive”

and can handle the error appropriately (or simply close open file handles before dieing off as well).

15.1 Which error can happen where?

This listing can be helpful to decide for which error to check after several actions in your script. As
you can see, this is merely necessary after ->new (Whose only error is due to user incompetence) and
->Parse. After that, the PDB and its parser should work smoothly together...
® —>new
NoFile
If no file name was given or the file has not been found
FileNotFound
If the file given via FileName was not found.
e ->Parse and ->Reset
I0Error
If the file could not be opened, e.g. due to a permission problem.
CorruptFile
If the file is empty or no ATOM lines have been found in it
e ->Get and ->Write (and all methods using them)

UnknownElement

If a specific element was requested via ’Element => ° thathas not yet been specified in ParsePDB.pm

BadParameter

If an external identifier and the respective internal identifier were given at the same time, e.g.

Chain and ChainLabel. It is no problem of course to mix for instance Residue and AtomNumber.

30

e —>Write
NoFile
If no file name has been given to ->Write
IOError

If the file could not be opened, e.g. due to a permission problem.

15.2 Methods for Error Handling

e ->Warning

Returns true, if a warning has been issued

Returns false, if no warning has been issued
if ($PDB->Warning) { print "Uh-oh...\n" }
e ->GetWarnings

Only returns the warning messages as array (no automatic output)

if ($PDB->Warning) {
@Warnings = $PDB->GetWarnings;
print @Warnings;

e ->PrintWarnings

Prints out all warning messages and also returns an array.

if ($PDB->Warning) {
@Warning = $PDB->PrintWarnings;
b

To check for specific warnings, e.g. to tell the user user explicitely, why his crappy file is crap indeed,

one can use the following methods.

e.g. if ($PDB->Warning NoChainLabel) { print "Watch out!" }

e —>Warning NoENDMDL

If a MODEL without a corresponding ENDMDL has been found
e —>Warning NoChainLabel

If no chain ID is given at all
e —->Warning MultipleChainLabel

If a certain chain ID has been found more than once. This can lead to problems when using let-
ters to read chains (->Get (Chain => "B")). If this warning has been reported, ->WriteChains

ignores the setting of ->ChainLabelAsLetter and uses numbers.

31

e —>Warning UnknownModel
If the requested model is not defined
e —>Warning UnknownChain
If the requested chain is not defined
e —->Warning UnknownChainLabel
If the given chain ID could not be found in the PDB
e —>Warning UnknownAminoAcid
If a 1- or 3-letter-code given to AminoAcidConvert has not been recognized
e —>Warning _InvalidAminoAcid

If a code given to AminoAcidConvert has not 1 or 3 letters

The parser provides the possibility to handle errors via the try/catch/otherwise methodology. The
possible errors are divided into IO (error opening, closing, writing a file, etc.), Config (wrong param-
eters given to a routine) and PDB (error due to crappy PDB format). The syntax for the try/catch
block is as follows. It is quite picky, note the semicolon at the end and that no semicolon is after the

other blocks (it is actually only one single commmand).

try {
$PDB = ParsePDB->new (FileName => $File);
$PDB->Parse;
}
catch Exception::Config with {
$Error = shift;
print "Error parsing the file:\n $Error";

catch Exception::I0 with {
$Error = shift;
print "An I/0 Error occurred:\n $Error";

catch Exception::PDB with {
$Error = shift;
print "Error parsing the file:\n $Error";

finally {
exit (1);
+;

32

