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The problem
Comparing the geometry of protein surfaces to look
for binding sites (or active sites) the proteins have in
common

Protein 1

Ligand

Protein 2

Active sites



Why is this difficult?
1. Protein surfaces are typically very large (tens of

thousands of atoms defining the surface is not un-
common)

2. The surfaces are very ‘knobbly’



Comparing small
unlabelled point sets

Suppose we had found two regions, one on each pro-
tein, that we thought might be the same shape. There
is still a problem - the points are unlabelled (i.e. ar-
bitrarily labelled). How do we decide which atoms to
match?
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Inference on the match

matrix
We use Markov Chain Monte Carlo (MCMC) simula-
tion to draw inference about the optimal match matrix.

The steps involved are as follows:

1. Update match matrix by choosing one row at ran-
dom and moving the 1 to a different position

2. Set α = min

(

1,
π(Λ∗|σ2,X,µ)
π(Λ|σ2,X,µ)

)

, where σ2 is a

variance parameter

3. Accept new match matrix with probability α

4. Repeat for large number of iterations



Summary of MCMC

procedure

X(M x 3)

µ(N x 3)

MCMC Λ
(match matrix)

Input: Two unlabelled point sets,X and  
          represented as matrices 

µ



Looking for possible

candidates for binding

sites in common -

Introducing the HPC
Choose an atom, i, in protein 1 and an atom, j in pro-
tein 2

Let B1(i) be the nearest N points to atom i in protein
1

Let B2(j) be the nearest N points to atom j in protein
2

We write d1(1), d1(2), . . . , d1(N) for the ordered dis-
tances of atoms in B1(i) from atom i in protein 1

We write d2(1), d2(2), . . . , d2(N) for the ordered dis-
tances of atoms in B2(j) from atom j in protein 2



TT statistics
Having chosen atoms i and j, we define a statistic TT
to compare the vectors (d1(1) . . . d1(N)) and
(d2(1) . . . d2(N)) of distances from the atoms i and j.

TT(i, j) =
N
∑

k=1

|d1(k) − d2(k)|
2

Rationale: If the atoms in the balls B1(i) and B2(j)

are in a similar arrangement one would expect TT to
be small.

BUT a small TT statistic does not guarantee that the
arrangements of atoms are the same.



The S statistic to improve
the search for candidates
for the MCMC algorithm

The idea of the S statistic is that we choose two atoms
in each ball of points that are close to the central atom
(i or j) and align the balls based on the positions of
those four atoms.

Let us label the two atoms in ball 1 i1 and i2 and the
two atoms in ball 2 j1 and j2. The alignment process
is as follows:

1. Centre both balls of points

2. Rotate ball 1 so that the vector from the origin to
atom i1 is pointing in the direction of the north
pole. Rotate ball 2 similarly for atom j1

3. Rotate ball 1 again so that the vector from the
origin to atom i2 lies in the x − z plane. Rotate
ball 2 similarly for atom j2.



This alignment brings atom i1 and j1 as close to-
gether as possible and atoms i2 and j2 as close to-
gether as possible given the condition on atoms i1

and j1.

We then define the S statistic, S(i, j), as the sum of
squares of distances from each point in the rotated
ball 1 to its nearest point in the rotated ball 2

S(i, j) =
N
∑

k=1

min
1≤l≤N

‖ [B1(i)]k − [B2(j)]l ‖
2



Embedding the balls for
which both TT(i,j) and

S(i,j) are small in larger
point sets

If for a particular choice of atoms i and j we find that
both TT(i,j) and S(i,j) are small, then there is a good
chance that the balls B1(i) and B2(j) are the same
shape. We therefore need to use the MCMC algorithm
to draw inference about the corresponding match ma-
trix.

We embed each ball in a larger point set, centered at
atom i for B1(i) and atom j for B2(j). To start us off
on the MCMC algorithm, we initially match each atom
in the rotated B1(i) to the nearest point in the rotated
B2(j). We consider all the other atoms in the larger
point sets to be unmatched.

Our starting point for the match matrix is given on the
next slide.



The initial match matrix

for the MCMC algorithm
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Results

Here we have three pictures generated by applying
the MCMC algorithm to pairs of balls for which the
values of both S(i,j) and TT(i,j) were small.

Protein 1 = red surface (matching atoms) and white
atoms (unmatched atoms)

Protein 2 = tan surface (matching atoms) and blue
atoms (unmatched atoms)

The final root mean square errors were around 0.6 for
each of these three final ‘solutions’ to the problem.



Conclusions
We set out to tackle the problem of looking for re-
gions of the same shape on the surfaces of proteins.
These regions might have biological significance (ac-
tive sites).

The MCMC algorithm worked well to compare unla-
belled point sets of up to a couple of hundred atoms.
However, the protein surfaces are large (the surfaces
of the proteins we used each contained about 12000
atoms).

Given an atom i in protein 1 and atom j in protein 2,
consider the balls of points centered on those atoms.
We used the HPC to calculate some simple statistics
(TT(i,j) and S(i,j)) to help look for regions that might
be the same shape. We then applied the MCMC al-
gorithm to find optimal matches in those regions.


