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Ultra Cold Atoms

« Confine vapour of alkall
metal atoms in
magnetic/optical trap
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Ultra Cold Atoms

« Confine vapour of alkall
metal atoms in
magnetic/optical trap

 Laser cooling of cloud - low
density allows cloud to be
cooled without (real space) -
condensation .

» Evaporative cooling - cools
cloud to temperature of
~ 10 — 100nK

» Lifetime of cold cloud~ 1 —
30s
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pose-cinstein  Condensation -
BEC
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» Bosonic atoms (e@Li, 2> Na, 3 Rb)
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Bosonic atoms (eQLi, 2> Na, °" RD)

Bose condensation - macroscopic occupation of
lowest quantum state

« T'= 0 non-interacting Bose gas - all atoms in
lowest state

T > 0 and/or interactions - depleted condensate,
non condensed atoms

Interacting Bose condensed system = superfluid
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Ultra Cold Atom BEC

* Low energy - contact interactions - locality

LA RESERRCH TEAM
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Ultra Cold Atom BEC

» Low energy - contact interactions - locality
« Confinement - non-uniform condensate

» Many situations well described igean field
theory

» Describe condensate by a single wave function
¢ (r,1)

« Time evolution of wavefunction given by
time-dependent Gross-Pitaevskii (GP) equation
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Gross-Pitaevskil Equation

« Consider ensemble d¥ bosonic atoms

« Atomic massn, s-wave scattering length
confined by external (magento-optical) potential

V (r).
- Normalization[ |¢ (r,t)|> d°r = N
« GP Equation
t —h?
)

5 = %Vzcb (r,t) 4+ V (r) ¢ (r,t)

Arh?a,

- o) o (r,1)
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Gross-Pitaevskil Equation

« Consider ensemble d¥ bosonic atoms

« Atomic massn, s-wave scattering length
confined by external (magento-optical) potential

V (r).
- Normalization[ |¢ (r,t)|> d°r = N
« GP Equation
t —h?
)

5 = %Vzcb (r,t) 4+ V (r) ¢ (r,t)

A P o

 Preserves normalization
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Conserved Quantities

» GP Dynamics conserves energy

poe)] = [ {5 Vo + Ve lo

1 4wha,
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Conserved Quantities

» GP Dynamics conserves energy

poe)] = [ {5 Vo + Ve lo

1 4wha,
2 m

o'} i
« GP equation then arises from variational principle

S 00(r,t)  OE|¢(r)]
Ot 0¢*(r)
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Example- Colliding Clouds

» Consider a condensate Inititially split into two
coherent components in a parabolic trap
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Example- Colliding Clouds

» Consider a condensate Inititially split into two
coherent components in a parabolic trap

« Condensate allowed to evolve - trap drives
components towards one another
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Example- Colliding Clouds

e wave nature of propagation gives rise to
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Example- Colliding Clouds

e wave nature of propagation gives rise to
iInterference effects during collision

» If clouds have higher density then system is
unstable with respect to soliton formation which
leads, via a secondary instability, to the creation
of vortex rings
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Quantum Fluctuations

» Corrections to mean field theory appear as
guantum fluctuations around the behaviour
governed by the classical GP equation.
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Quantum Fluctuations

» Corrections to mean field theory appear as
guantum fluctuations around the behaviour
governed by the classical GP equation.

« Essential for phenomena such as depletion and
the long time evolution of dynamically unstable
systems

» Also need to account for thermal effects beyond
the mean field.
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Quantum Fluctuations

» Range of methods available, none entirely
satisfactory (failure to conserve correct quantities,
Incorrect collective mode energies etc)
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Quantum Fluctuations

» Range of methods available, none entirely
satisfactory (failure to conserve correct
guantities, incorrect collective mode energies etc)

* Focus here has been on Truncated Wigner
Approximation (TWA)

* Requires parallel evolution of an ensemble of
iIdentical GP systems with different initial
conditions, drawn from a random distribution
determined by the initial (possibly mixed)
guantum state

» Averages over ensemble provide condensate
dynamics, variances etc provide information on
guantum fluctuations.
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TWA

 ldeal Task Farm application

o Allocate one member of ensemble to each
processor

 Allow each to evolve independently according to
GP equation

» At regular intervals collect current state of each
system and average guantities of interest

« Good statistics require300 realizations

« Efficient algorithm for solution of GP dynamics
(Crank-Nicholson) which respects conservation
laws - need many processors but for relatively
short times.
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Quantum Fluctuations

Dipole Oscillations in Optical lattice

« Consider a quasi 1d system in which a
condensate is confined by a parabolic potential or
which is superposed a periodic modulation
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Quantum Fluctuations

Dipole Oscillations in Optical lattice

» Consider a quasi 1d system in which a
condensate is confined by a parabolic potential or
which is superposed a periodic modulation

« Condensate is initially placed away from the
centre of the trap and allowed to evolve.
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Dipole Oscillations

Coherence Oscillation
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Dipole Oscillations

Coherence Oscillation
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Conclusions

o Efficient numerical simulations of mean field
dynamics of Bose condensates
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Conclusions

o Efficient numerical simulations of mean field
dynamics of Bose condensates

» Use of large task farm enables the investigation
of qguantum and thermal fluctuation effects in
systems of ultra-cold Bosonic atoms, including
number fluctuations and the investigation of
decoherence.
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