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• Mean Field Description
• Quantum Fluctuations
• Truncated Wigner Approximation - Task Farming
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Ultra Cold Atoms
• Confine vapour of alkali

metal atoms in
magnetic/optical trap
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Ultra Cold Atoms
• Confine vapour of alkali

metal atoms in
magnetic/optical trap

• Laser cooling of cloud - low
density allows cloud to be
cooled without (real space)
condensation

• Evaporative cooling - cools
cloud to temperature of
∼ 10 − 100nK

• Lifetime of cold cloud∼ 1 −
30s
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Bose-Einstein Condensation -
BEC

• Bosonic atoms (eg7Li, 23Na, 87Rb)
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Bose-Einstein Condensation -
BEC

• Bosonic atoms (eg7Li, 23Na, 87Rb)
• Bose condensation - macroscopic occupation of

lowest quantum state
• T = 0 non-interacting Bose gas - all atoms in

lowest state
• T > 0 and/or interactions - depleted condensate,

non condensed atoms
• Interacting Bose condensed system = superfluid
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Ultra Cold Atom BEC
• Low energy - contact interactions - locality
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Ultra Cold Atom BEC
• Low energy - contact interactions - locality
• Confinement - non-uniform condensate
• Many situations well described bymean field

theory
• Describe condensate by a single wave function

φ (r, t)

• Time evolution of wavefunction given by
time-dependent Gross-Pitaevskii (GP) equation
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Gross-Pitaevskii Equation
• Consider ensemble ofN bosonic atoms
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Gross-Pitaevskii Equation
• Consider ensemble ofN bosonic atoms
• Atomic massm, s-wave scattering lengthas

confined by external (magento-optical) potential
V (r).

• Normalization
∫

|φ (r, t)|2 d3
r = N

• GP Equation

i~
∂φ (r, t)

∂t
=

−~
2

2m
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Gross-Pitaevskii Equation
• Consider ensemble ofN bosonic atoms
• Atomic massm, s-wave scattering lengthas

confined by external (magento-optical) potential
V (r).

• Normalization
∫

|φ (r, t)|2 d3
r = N

• GP Equation

i~
∂φ (r, t)

∂t
=

−~
2

2m
∇2φ (r, t) + V (r)φ (r, t)

+
4π~

2as

m
|φ (r, t)|2 φ (r, t)

• Preserves normalization
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Conserved Quantities
• GP Dynamics conserves energy

E [φ (r)] =

∫
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~
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Conserved Quantities
• GP Dynamics conserves energy

E [φ (r)] =

∫
{

~
2

2m
|∇φ (r)|2 + V (r) |φ (r)|2

+
1

2

4π~
2as

m
|φ (r)|4

}

d3
r

• GP equation then arises from variational principle

i~
∂φ(r, t)

∂t
=

δE [φ(r)]

δφ∗(r)
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Example - Colliding Clouds
• Consider a condensate inititially split into two

coherent components in a parabolic trap

−50

0

−100

100

0 100

400

50

500

300

x

200

Bose Condensate Dynamics – p.9/16



Example - Colliding Clouds
• Consider a condensate inititially split into two

coherent components in a parabolic trap
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• Condensate allowed to evolve - trap drives
components towards one another
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Example - Colliding Clouds
• wave nature of propagation gives rise to

interference effects during collision
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Example - Colliding Clouds
• wave nature of propagation gives rise to

interference effects during collision
• If clouds have higher density then system is

unstable with respect to soliton formation which
leads, via a secondary instability, to the creation
of vortex rings
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Quantum Fluctuations
• Corrections to mean field theory appear as

quantum fluctuations around the behaviour
governed by the classical GP equation.
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Quantum Fluctuations
• Corrections to mean field theory appear as

quantum fluctuations around the behaviour
governed by the classical GP equation.

• Essential for phenomena such as depletion and
the long time evolution of dynamically unstable
systems

• Also need to account for thermal effects beyond
the mean field.
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Quantum Fluctuations
• Range of methods available, none entirely

satisfactory (failure to conserve correct quantities,
incorrect collective mode energies etc)
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Quantum Fluctuations
• Range of methods available, none entirely

satisfactory (failure to conserve correct
quantities, incorrect collective mode energies etc)

• Focus here has been on Truncated Wigner
Approximation (TWA)

• Requires parallel evolution of an ensemble of
identical GP systems with different initial
conditions, drawn from a random distribution
determined by the initial (possibly mixed)
quantum state

• Averages over ensemble provide condensate
dynamics, variances etc provide information on
quantum fluctuations.
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TWA
• Ideal Task Farm application
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TWA
• Ideal Task Farm application
• Allocate one member of ensemble to each

processor
• Allow each to evolve independently according to

GP equation
• At regular intervals collect current state of each

system and average quantities of interest
• Good statistics requires200 realizations
• Efficient algorithm for solution of GP dynamics

(Crank-Nicholson) which respects conservation
laws - need many processors but for relatively
short times.
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Quantum Fluctuations
Dipole Oscillations in Optical lattice

• Consider a quasi 1d system in which a
condensate is confined by a parabolic potential on
which is superposed a periodic modulation
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Quantum Fluctuations
Dipole Oscillations in Optical lattice

• Consider a quasi 1d system in which a
condensate is confined by a parabolic potential on
which is superposed a periodic modulation

• Condensate is initially placed away from the
centre of the trap and allowed to evolve.
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Dipole Oscillations
Coherence Oscillation
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Dipole Oscillations
Coherence Oscillation Number Fluctuations
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Conclusions
• Efficient numerical simulations of mean field

dynamics of Bose condensates
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Conclusions
• Efficient numerical simulations of mean field

dynamics of Bose condensates
• Use of large task farm enables the investigation

of quantum and thermal fluctuation effects in
systems of ultra-cold Bosonic atoms, including
number fluctuations and the investigation of
decoherence.
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