Publications

27. Oakley, M.T., Do, H., Hirst, J.D. & Wheatley, R.J., First principles predictions of thermophysical properties of refrigerant mixtures. J. Chem. Phys, 134, 114518 (2011).
DOI: http://dx.doi.org/10.1063/1.3567308
26. Do, H., Wheatley, R.J. & Hirst, J.D., Microscopic structure of liquid 1-1-1-2-tetrafluoroethane (R134a) from Monte Carlo simulation. Phys. Chem. Chem. Phys., 12, 13266–13272 (2010).
DOI: http://dx.doi.org/10.1039/C0CP00620C
25. Do, H., Wheatley, R.J. & Hirst, J.D., Gibbs ensemble Monte Carlo simulations of binary mixtures of methane, difluoromethane and carbon dioxide. J. Phys. Chem. B, 114, 3879–3886 (2010).
DOI: http://dx.doi.org/10.1021/jp909769c
24. Robinson, D., Besley, N.A., O'Shea, P. & Hirst, J.D., Calculating the fluorescence of 5-hydroxytryptophan in proteins. J. Phys. Chem. B, 113, 14521–14528 (2009).
DOI: http://dx.doi.org/10.1021/jp9071108
23. Bulheller, B.M., Pantoş G.D., Sanders, J.K.M. & Hirst, J.D., Electronic structure and circular dichroism spectroscopy of naphthalenediimide nanotubes. Phys. Chem. Chem. Phys., 11, 6060–6065 (2009).
DOI: http://dx.doi.org/10.1039/b905187b

spacerjournal graphic
22. Robinson, D., Besley, N.A., Lunt, E.A.M., O'Shea, P. & Hirst, J.D., Electronic structure of 5-hydroxyindole: from gas-phase to explicit solvation. J. Phys. Chem. B, 113, 2535–2541 (2009).
DOI: http://dx.doi.org/10.1021/jp808943d
21. Oakley, M.T., Guichard, G. & Hirst, J.D., Calculations on the Electronic Excited States of Ureas and Oligoureas. J. Phys. Chem. B, 111, 3274–3279 (2007).
DOI: http://dx.doi.org/10.1021/jp067890a
20. Oakley, M.T. & Hirst, J.D., Charge-Transfer Transitions in Protein Circular Dichroism Calculations. J. Am. Chem. Soc., 128, 12414–12415 (2006).
DOI: http://dx.doi.org/10.1021/ja0644125

spacerjournal graphic
19. Rogers, D.M., Hirst, J.D., Lee, E.P.F. & Wright, T.G., Ab Initio Study of the Toluene Dimer. Chem. Phys. Lett., 427, 410–413 (2006).
DOI: http://dx.doi.org/10.1016/j.cplett.2006.07.022

spacerjournal graphic
18. Jansen, T.L.C., Dijkstra, A.G., Watson, T.M., Hirst, J.D. & Knoester, J., Modeling the amide I bands of small peptides. J. Chem. Phys., 125, 44312/1 – 44312/9 (2006).
DOI: http://dx.doi.org/10.1063/1.2218516
17. Rogers, D.M., Besley, N.A., O'Shea, P. & Hirst, J.D., Modeling the Absorption Spectrum of Tryptophan in Proteins. J. Phys. Chem. B, 109, 23061–23069 (2005).
DOI: http://dx.doi.org/10.1021/jp053309j
16. Watson, T.M. & Hirst, J.D., Theoretical Studies of the Amide I Vibrational Frequencies of [Leu]-enkephalin. Mol. Phys., 103, 1531–1546 (2005).
DOI: http://dx.doi.org/10.1080/00268970500052387
15. Besley, N.A, Oakley, M.T., Cowan, A.J. & Hirst, J.D., A Sequential Molecular Mechanics/Quantum Mechanics Study of the Electronic Spectra of Amides. J. Am. Chem. Soc., 126, 13502–13511 (2004).
DOI: http://dx.doi.org/10.1021/ja047603l

spacerjournal graphic
14. Watson, T.M. & Hirst, J.D., Vibrational Analysis of Capped [Leu]Enkephalin. Phys. Chem. Chem. Phys., 6, 2580–2587 (2004).
DOI: http://dx.doi.org/10.1039/b315501c
13. Gilbert, A.T.B. & Hirst, J.D., Charge-Transfer Transitions in Protein Circular Dichroism Spectra. J. Mol. Struct. (THEOCHEM), 675, 53–60 (2004).
DOI: http://dx.doi.org/10.1016/j.theochem.2003.12.038
12. Watson, T.M. & Hirst, J.D., Influence of Electrostatic Environment on the Vibrational Frequencies of Proteins. J. Phys. Chem. A, 107, 6843–6849 (2003).
DOI: http://dx.doi.org/10.1021/jp0344500
11. Watson, T.M. & Hirst, J.D., DFT Vibrational Frequencies of Amides and Amide Dimers. J. Phys. Chem. A, 106, 7858–7867 (2002).
DOI: http://dx.doi.org/10.1021/jp025551l
10. Besley, N.A., Brienne, M.-J. & Hirst, J.D., Electronic Structure of a Rigid Cyclic Diamide. J. Phys. Chem. B, 104, 12371–12377 (2000).
DOI: http://dx.doi.org/10.1021/jp0024524
9. Besley, N.A. & Hirst, J.D., Hydrogen Bonding in Protein Circular Dichroism Calculations. J. Mol. Struct. (THEOCHEM), 506, 161–167 (2000).
DOI: http://dx.doi.org/10.1016/S0166-1280(00)00409-7
8. Besley, N.A. & Hirst, J.D., Theoretical Studies toward Quantitative Protein Circular Dichroism Calculations. J. Am. Chem. Soc., 121, 9636–9644 (1999).
DOI: http://dx.doi.org/10.1021/ja990627l
7. Besley, N.A. & Hirst, J.D., Ab Initio Study of the Electronic Spectrum of Formamide with Explicit Solvent. J. Am. Chem. Soc., 121, 8559–8566 (1999).
DOI: http://dx.doi.org/10.1021/ja990064d
6. Besley, N.A. & Hirst, J.D., Ab Initio Study of the Effect of Solvation on the Electronic Spectra of Formamide and N-Methylacetamide. J. Phys. Chem. A, 102, 10791–10797 (1998).
DOI: http://dx.doi.org/10.1021/jp982645f
5. Hirst, J.D., Improving Protein Circular Dichroism Calculations through Better Ab Initio Models of the Amide Chromophore. Enantiomer, 3, 215–220 (1998).
4. Hirst, J.D., Improving Protein Circular Dichroism Calculations in the Far-Ultraviolet through Reparametrizing the Amide Chromophore. J. Chem. Phys., 109, 782–788 (1998).
DOI: http://dx.doi.org/10.1063/1.476617
3. Hirst, J.D. & Persson, B.J., Ab Initio Calculations of the Vibrational and Electronic Spectra of Diketopiperazine. J. Phys. Chem. A, 102, 7519–7524 (1998).
DOI: http://dx.doi.org/10.1021/jp982423h
2. Hirst, J.D., Hirst, D.M. & Brooks III, C.L., Multireference Configuration Interaction Calculations of Electronic States of N-Methylformamide, Acetamide, and N-Methylacetamide. J. Phys. Chem. A, 101, 4821–4827 (1997).
DOI: http://dx.doi.org/10.1021/jp970675x
1. Hirst, J.D., Hirst, D.M. & Brooks III, C.L., Ab Initio Calculations of the Excited States of Formamide. J. Phys. Chem., 100, 13487–13491 (1996).
DOI: http://dx.doi.org/10.1021/jp960597y